Lecture 9 - 16/04/2025

Light-emitting diodes
- Basic properties Chap. 13 in Rosencher-Vinter =

. .. . :
- Notion of efflClency reference chapter until Lecture 14!

Physics of photonic semiconductor devices



Main applications of light-emitting diodes
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Semiconductors for optoelectronics
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Spectral domain covered by commercial LEDs and LDs
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LED structures
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Heterojunction allows for an efficient spatial trapping of injected carriers = increased radiative
efficiency, improved operating characteristics (L-/ & I-V curves)
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LED structures

Multiple quantum well LED
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Blue LED structure: a basic picture

p-type GaN - 0.2 um

InGaN quantum wells 2-3 nm

n-type GaN - 3 um

Substrate (sapphire, SiC, Si or even FS-GaN)

Substrate = epilayer material quality

n-type and p-type doped layers = efficient injection

Active region = radiative efficiency
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Key markets for llI-N LEDs

« Automotive
* Forward lighting
« 3D sensing

« Consumer
* Projection
e Tablets/monitors/TV

* Industry
* Video walls
* White goods
» 3D sensing

* General lighting
* Indoor/outdoor lighting
« Shop lighting

Sources: OSRAM Opto Semiconductors
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Emerging LED market: toward 3D sensing

3D Sensing applications Emitter technologies

Examples LED Edge VCSEL?

@ emitter .

Mobile Not used
Devices for 3D
Sensing ‘
Deep-Dive
Auto- |
motive™
1) Different market that shows same emitter technology 2) Vertical-cavity surface-emitting laser
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LED chips: current trends

Evolution of chip sizes

Avalilability of chip Before 2000
technology at OS

From mid 2000s Under
development

“Standard” LED

l Chip size >200
(um)

OS USP
in uLED
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Mini LED ULED

<200 100 to ~10
<10
<
<2 for monolithic
arrays

MLED chips in all colors
Highest efficiency and reliability

6 inch production
Access to transfer technology

Proprietary packaging technology

Sources: OSRAM Opto Semiconductors
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(2020
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LED market

Projection Emitter technologies Not used
applications

LED ) High power RGB low Pixelated

powel MLED .
laser . array §

Home Projection gz §

Professional
Projection

Mobile
Projection

Augmented
Reality

Future scope
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LEDs: basic properties

LEDs made of indirect bandgap semiconductors
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Indirect bandgap = luminescence through a localized defect lying within the bandgap
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LEDs: basic properties

Cf. Lectures 7 & 14, fall semester + Chap. 7 Rosencher-Vinter
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Out of equilibrium carrier density

_ 'ITtot — Strong dependence on the thickness of the active region (homo- vs heterojunction

n qd (QWs, etc.))

Once n is known, possibility to derive the position of the quasi-Fermi levels E¢, and Eg,
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Electrical injection

« Both the valence and the conduction bands get more and more filled upon increasing
current injection

« The carrier populations are described by the quasi-Fermi levels E., and E,

E
A CB f(E): 1
________________________ E ‘ E-E
Fe exp( )+1
B
hv k
____________ . |
V £(E) =7 ¢
VB exp[ F“j+1
k., T

Note that here f (E) describes the evolution of the electron population in
the valence band!
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Electrical injection

Determination of the quasi-Fermi level

© exp
B

° 1
n_Ej (E—EFJ p. (E)dE
= |+1

How many photons are emitted?

e CB

VB
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J=J,=J electrical neutrality

and n,=n,=n (if the doping levels are not too high)
Steady-state = recombination in the active region

The number of emitted photons is then given by

R, x Volume = Jig x S <—Contact size

with R,,; the recombination rate (per unit volume)
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Electrical injection

Different paths for electron-hole recombinations Cf. Lecture 7, fall semester + Chaps. 5-7
« Non-radiative A n Rosencher-Vinter
» Spontaneous Bn? B bimol. coeff. ~10-12-10-10 cm3s""*
« Auger Cn3
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Quasi-Fermi levels in bulk semiconductors (reminder)

Example: quasi-Fermi levels in bulk GaAs

Non-degenerate case Degenerate case
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Spontaneous emission

In an intrinsic bulk semiconductor: Ct. Lectures 12 & 14, fall semester
] + Chap. 7 Rosencher-Vinter

The spontaneous recombination rate (s*') between the CB and the VB is given for a state with a
wavevector k

rsp(k) = Acv fc(Ec(k))(1 'fv(Ev(k)))

with Acy, = 1/17x the spontaneous recombination rate

and the radiative lifetime is given by

nche, 2 h’g,m,
R="%5 32 3~ = T when E,{
q chnopa)vc q nopEgEP

with x,. the interband dipolar optical matrix element and E; the Kane energy (~20-22 eV)

= It is more challenging to achieve a laser based on a wide bandgap SC!
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Spontaneous emission

In an intrinsic bulk semiconductor: Cf. Lecture 14, fall semester + Chap. 7 Rosencher-Vinter

The spectral distribution of spontaneous recombination rate Rg,(hv) due to a quasi-equilibrium
distribution of carriers is then given by

Spin-related
\"\
R, () =22, 22 (k)(1-£, (k)5 (E.~E, =hv)
The summation is performed over all k-vectors verifying the energy conservation condition (hence the
Dirac delta)
E.(K)—E,(K)=hv =F, +— nk’ Expression relying on the verticality of optical
2m, transitions in k-space
which leads to \ 1 1 1
= * + *
Ry () =], 1, (E)py(E) S (E=hv)dE =r, () py(hw) M Me ™My

P

R, () =~y () Y. (E. () (1= 1, (£, (1))

Tp oo =
Joint density of states (JDOS)
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LEDs: basic properties

Spectral distribution of spontaneous recombination rate

R () =y (1) £, () (1- £, ().

r
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i.e., Boltzmann approximation is valid)
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LEDs: basic properties
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To be seen in the series!
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LEDs emission spectra

Spectral density emitted by LEDs
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LED efficiency

Internal quantum efficiency (IQE, 7,):

n, = [generated photons]/[injected electrons] with [] = particle number

TtOt Tn r Bn

77.: = =
"t r 47z A _+Bn+Cn’

r

with 7.,  non-radiative lifetime
7 radiative lifetime

The internal quantum efficiency can be as high as 99% at 300 K for InGaN QWs!

-

A

The photon fluxis | @ = |'77inj, . JIq
‘LY

~

Injection efficiency = capture of with J the electron current density
carriers by the active region (QWSs)
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LED efficiency

External quantum efficiency (EQE, 7): [emitted photons]/[electrons]

_ s extraction
n 77inj Tli Next efficiency
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